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Abstract
Recommender systems are crucial tools in online applications, as-
sisting users in discovering relevant content efficiently. Recent stud-
ies demonstrate that contrastive learning (CL) based methods yield
significant results in collaborative filtering (CF) recommendations,
due to their ability to address the issue of data sparsity. However,
two inherent limitations remain unexplored in these methods. a)
Since the datasets commonly used are binary (0: no interaction; 1:
interaction), current methods only provide rudimentary modeling
of user behaviors in binary form, which fails to model complex
user-item interactions and relationships in real-world recommen-
dation scenarios. b) Existing CL-based methods mostly construct
contrastive views through heuristic-based embedding or structure
perturbation, which are prone to introduce noise or discard im-
portant information, leading to a decreased representation quality.
To address these issues, we propose a Decoupled Behavior-based
Contrastive Recommendation model (DBCR) that effectively de-
couples user behaviors from binary datasets for better user-item
interaction modeling. The core idea is to decouple latent user behav-
iors from unlabelled user-item interactions (binary datasets) and
∗Meng Xi is the corresponding author.
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utilize self-supervised contrastive learning to optimize CF-based
recommendation jointly. Specifically, we introduce latent behav-
ior variables and embed them into user-item interaction modeling
within the generalized expectation-maximization (EM) framework.
Moreover, we design a contrastive learning task by constructing
a preference view instead of unreasonable perturbation to further
improve the learned representation. Experimental results and anal-
yses on three real-world datasets demonstrate the effectiveness
of DBCR and its high efficiency, with an average improvement
of 16.9% over state-of-the-art methods. Our code is available on
https://github.com/Du-danger/DBCR.
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1 Introduction
Recently, recommender systems (RS) have emerged as essential
tools in web applications, aiding users in swiftly discovering rel-
evant content from a vast amount of online information. These
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systems provide personalized recommendations based on user in-
terests, such as recommending items on social networking sites
[9, 36], short video platforms [25, 35] and shopping apps [17, 27].

Collaborative Filtering (CF) is one of the most commonly em-
ployed methods in recommendation, wherein it utilizes the pref-
erences of similar users to recommend new items to a given user
[1, 26, 29]. To implement CF-based recommendation models, one
commonly utilized strategy is to reconstruct historical interactions
by assigning embeddings to both users and items based on ma-
trix factorization (MF) [10]. To enhance and generalize MF-based
methods, some approaches (e.g., NCF, AutoR, DMF) have extended
the matrix factorization by introducing neural networks, which
improve the quality of user and item embeddings [7, 8, 31].

Recently, with the rise of graph neural network (GNN), researchers
have focused on utilizing GNN to propagate embeddings on user-
item interaction graphs and learn more effective user/item repre-
sentations [3, 21]. NGCF [18] and LightGCN [6] are representative
examples of GNN-based CF models that have shown promising
results in personalized recommendations. These models take ad-
vantage of GNN to propagate embeddings on user-item interaction
graph, enabling them to capture intricate interdependencies be-
tween users and items that traditional CF models might overlook.
However, existing GNN-based methods are often faced with the
challenges of data sparsity. To address this problem, contrastive
learning (CL)-based methods have been proposed, which have great
potential in the field of personalized recommendation [15, 34]. The
core of this approach is to incorporate self-supervised contrastive
learning by maximizing (minimizing) the mutual information of
positive (negative) pairs in different views, thus obtaining a more
robust and effective representation. Based on this paradigm, some
methods have been proposed, such as SGL [26], NCL [12], SimGCL
[34] (XSimGCL [33]) have shown satisfactory results and achieved
state-of-the-art performance in CF-based recommendation.

Although CL-based methods have achieved state-of-the-art per-
formance in CF-based recommendation, they still have some inher-
ent limitations. (1) Primarily, since the datasets commonly used
in CF-based recommendation are binary, these methods typically
model user behaviors as either 0 (no interaction) or 1 (interaction),
which provides rudimentary modeling of user-item interaction
and fails to explore the diversity of user behaviors ("like", "dislike",
"comment", etc.), thus impeding their ability to model complex
relationships between users and items in real-world recommen-
dation scenarios. While several classic datasets already exist that
encompass multiple types of feedback, they are relatively scarce
compared to binary datasets.1 In addition, in some certain scenarios,
user behaviors may not be easily collected. For instance, in some
video platforms (VPs), users are often recommended various game
content. When users click on the game content, they are redirecting
to external pages to initiate downloads or make in-game purchases.
During this period, VPs can only collect the click behaviors, while
other behaviors remain untracked. This means downloads and other
external behaviors rely on the feedback from the gaming platforms
to VPs. However, gaming platforms may not prefer to return such
behaviors, like downloads or purchases, to reduce the recommen-
dation fees paid to VPs, which results in difficulties in collecting

1https://github.com/RUCAIBox/RecSysDatasets

multi-behavioral data and modeling different relationship between
users and items. (2) Secondly, existing CL-based methods mostly
construct contrastive views through heuristics-based structure or
embedding perturbation [26, 34], which may introduce noisy infor-
mation or discard important information in representation learning.
For example, when adding edges between users and items, if these
edges do not align with user preferences, they will introduce noise
and harm the user and item modeling. This may negatively affect
representation learning and reduce the model performance.

To overcome the problemsmentioned above, we propose a decou-
pled behavior-based contrastive recommendation model (DBCR),
which aims to decouple latent user behaviors from binary interac-
tions for better modeling of users and items within the generalized
expectation-maximization (EM) framework. Specifically, in the E-
step, we introduce a latent variable to decouple user behaviors into
the user-item interaction modeling and learn the distribution func-
tion of behavior variables by capturing preference levels between
users and items. In the M-step, we employ the learned behaviors to
refine user and item representations through behavior contrastive
learning, which maximizes the consistency between user-item in-
teraction and the corresponding behavior variables. In addition, to
ensure effective and informative contrastive learning, we design a
preference-guided contrastive learning task without unreasonable
perturbation on structure and embedding, to further improve the
learned representation. Finally, we design a multi-task learning
strategy to optimize our model for effective representation learning
jointly. In summary, our contributions are mainly as follows:
• We propose a decoupled behavior-based contrastive recommen-
dation model (DBCR) that effectively decouples latent user behav-
iors from binary interactions, which empowers CL-based meth-
ods to model complex relationships between users and items in
real-world recommendation scenarios.

• We tackle the behavior decoupling problem by introducing a
latent variable to represent user behaviors and learn them alter-
nately through an expectation-maximization (EM) framework,
which guarantees that the optimization process is convergent.

• We design a contrastive learning task by constructing a prefer-
ence view instead of unreasonable perturbation on embedding
and structure, ensuring an effective contrastive learning process.

• Experiments conducted on three real-world datasets demonstrate
that DBCR surpasses state-of-the-art methods. Experimental anal-
ysis further validates the effectiveness of the model, indicating
its potential as a reference for practitioners in the field.

2 Related Work
2.1 Contrastive Learning for Recommendation
Recently, contrastive learning (CL) has attracted considerable atten-
tion in recommendation due to its ability to address the issue of data
sparsity [4, 24, 37, 39]. For example, SimpleX [14] designs a cosine
similarity contrastive learning task considering first-order neigh-
bor nodes. SGL [26] employs heuristic-based data augmentation
methods to generate contrastive views by perturbing nodes/edges.
GCA [38] presents joint adaptive data augmentation at structure
and attribute levels by removing edges and masking features. How-
ever, random perturbations on the graph structure are prone to
introduce noise or discard important information. Therefore, CGI
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[23] selectively drops edges/nodes to construct more practical con-
trastive views. NCL [12] considers similar semantic prototypes in
the embedding space and structural neighbors as positive views.
HCCF [29] captures local and global synergies through cross-view
contrastive learning enhanced by hyper-graphs. SimGCL [34] ex-
perimentally determines that the contribution of data augmentation
to SGL is minimal, thus proposing the addition of noise to each
layer embedding to generate positive views. To avoid manual con-
struction of contrastive instances, SimGRACE [28] uses different
graph encoders as view generators and compares the semantic simi-
larity between the obtained instances. Based on SimGCL, XSimGCL
[33] discards the ineffective augmentations and instead employs a
noise-based embedding augmentation for CL, with greatly reducing
the complexity of GCL.

However, these methods typically model user behaviors as 0
(no interaction) or 1 (interaction) due to the limitation of binary
datasets, thus impeding their ability to model complex relationships
between users and items in real-world recommendation scenarios.
In addition, these methods mostly construct contrastive views based
on heuristic embedding or structure perturbation, which may in-
troduce noisy information in representation learning.

2.2 Decoupled Factor-based Recommendation
The pursuit of decoupling latent factors from implicit feedback has
become increasingly prominent in recent scholarship. DGCF [20]
advances this concept by performing disentangled representation
learning via a graph neural network that utilizes an embedding par-
tition strategy. To integrate auxiliary information from the domains
of users or items into the recommendation process, DisenHAN [22]
seeks to distill disentangled representations for users and items
using a heterogeneous graph attention framework. Meanwhile,
KGIN [19] is trying to capture latent user intents by employing an
item knowledge graph, with the aim of improving the efficacy of
recommendations. DCF [5] bifurcates users and items into factor-
level representations and employs a factor-level attention scheme
to discern underlying intents. Moreover, CDR [2] innovates with
a dynamic routing algorithm designed to elucidate correlations
among user intentions, thus helping to refine embeddings. How-
ever, existing decoupled methods are predicated on fully supervised
learning paradigms, which may be constrained by the dearth of
dense user-item interaction data in real-world settings. To over-
come this impediment, DCCF [15] introduces a novel paradigm
that harnesses the power of self-supervised learning to facilitate
intent-aware data augmentation.

However, the above methods often disentangle user intents from
user-item interactions, while ignoring the diversity of user behav-
iors. Ourmethod first proposes to use the Expectation-Maximization
(EM) algorithm to alternately decouple user behaviors through E-
steps and M-steps, with the goal of eventually decoupling latent
user behaviors from binary user-item interaction.

3 PRELIMINARIES
3.1 Problem Formulation
In CF-based recommendation, we define U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 } and
V = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } as the sets of users and items, respectively,
where 𝑀 , 𝑁 are the total number of users and items. Users and

items are associated with trainable embedding vectors E𝑢 ∈ R𝑀×𝑑

and E𝑣 ∈ R𝑁×𝑑 , where 𝑑 represents the dimensionality of the em-
beddings. The user-item interaction matrix A ∈ R𝑀×𝑁 denotes the
observed interactions between users and items, where an element
A𝑖, 𝑗 = 1 if the user 𝑖 has interacted with item 𝑗 , otherwise A𝑖, 𝑗 = 0.
For convenience, we adopt (𝑢𝑖 , 𝑣 𝑗 ) to represent the interaction be-
tween user 𝑖 and item 𝑗 . Given the items that user 𝑖 has interacted
with, the goal of recommendation is to predict the items that user 𝑖
is likely to access in the future, which can be formalized as:

𝑓𝜃 (A𝑖,:) =⇒ R𝑖 , (1)

where 𝑓 is the model function with parameters 𝜃 , A𝑖,: implies the
interacted items of user 𝑖 , and R𝑖 denotes the item set that user
𝑖 tends to interact with next. Then, the optimization objective of
the recommendation task can be formulated as finding the opti-
mal parameter that maximizes the log-likelihood function of the
interacted users and items:

𝜃 ′ = argmax
𝜃

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 ). (2)

3.2 GNN-based Recommendation Backbone
GNN-based methods usually perform 𝐿 GNN layers on the interac-
tion graph to learn the representation of users and items. The 𝑙-th
GNN layer is defined as:

𝑧𝑢
𝑖,𝑙

= 𝜎 (Ã𝑖,:Z𝑣𝑙−1), 𝑧𝑣
𝑗,𝑙

= 𝜎 ((Ã:, 𝑗 )TZ𝑢𝑙−1), (3)

where 𝑧𝑢
𝑖,𝑙

and 𝑧𝑣
𝑗,𝑙

represent output representation for user 𝑖 and
item 𝑗 in the 𝑙-th layer. We initialize Z𝑢0 and Z𝑣0 with the embed-
ding E𝑢 and E𝑣 respectively. 𝜎 (·) denotes the LeakyReLU acti-
vation function. Ã is the normalized interaction matrix, where
Ã𝑖, 𝑗 = A𝑖, 𝑗/

√︃
𝐷𝑢
𝑖
𝐷𝑣
𝑗
(𝐷𝑢
𝑖
=
∑
A𝑖,: and 𝐷𝑣𝑗 =

∑
A:, 𝑗 ). Then, we sum

the output representation from all GNN layers to obtain the final
user (item) representation and employ a dot product to predict the
interaction probability 𝑦𝑖, 𝑗 between user 𝑖 and item 𝑗 as:

𝑧𝑢𝑖 =

𝐿∑︁
𝑙=0

𝑧𝑢
𝑖,𝑙
, 𝑧𝑣𝑗 =

𝐿∑︁
𝑙=0

𝑧𝑣
𝑗,𝑙
, 𝑦𝑖, 𝑗 = 𝑧

𝑢
𝑖 · 𝑧𝑣𝑗 . (4)

We bring 𝑦𝑖, 𝑗 into Eq. 2 to get a specific optimization objective:

𝜃 ′ = argmax
𝜃

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑦𝑖, 𝑗 , (5)

which is equivalent to minimizing the following BPR loss:

L𝑏𝑝𝑟 = −
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝜙 (𝑦𝑖, 𝑗 − 𝑦𝑖,𝑛), (6)

where 𝑦𝑖, 𝑗 and 𝑦𝑖,𝑛 denote the predicted scores for a pair of positive
and negative items of user 𝑖 . 𝜙 (·) is the Sigmoid function.

4 Method
The architecture of DBCR within the EM framework is presented
in Figure 1. It first conducts GNN-based representation learning to
obtain original view representation. Then, it iteratively performs
the E-step andM-step to estimate the behavior distribution, obtain a
preference view representation, and optimize the model parameters
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Figure 1: The overview of the proposed DBCR.

𝜃 . During the E-step, it performs behavior and preference learning
to estimate the behavior distribution and obtain preference view
representation. In the M-step, it optimizes the model parameter 𝜃
through behavior contrastive learning (BCL) and preference-guided
contrastive learning (PCL). Throughout each iteration, both behav-
ior variables and 𝜃 are updated accordingly.

4.1 Latent Behavior Modeling
The main objective of the recommendation task is to optimize Eq.
2. Assume that there are 𝐾 different user behaviors (e.g., "like",
"dislike", "comment", etc.) in a recommender system that forms
the behavior variable 𝐶 = {𝑐𝑘 }𝐾𝑘=1, then the probability of user 𝑖
interacting with item 𝑗 can be rewritten as follows:

𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 ) = E(𝑐 ) [𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 )], (7)

where we embed latent behaviors into the user-item interaction
modeling. Then, based on Eq. 7, we can rewrite Eq. 2 as follows:

𝜃 ′ = argmax
𝜃

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

logE(𝑐 ) [𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 )] . (8)

However, optimizing this objective remains a challenge due to
the difficulty of integral. To address this, we decouple user-item
interaction into 𝐾 latent user behavior types and adopt a novel
approach by constructing a lower-bound function and maximizing
it. First, we have:

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

logE(𝑐 ) [𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 )] =
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log
𝐾∑︁
𝑘=1

𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ).

(9)
Since the datasets used are binary, user behaviors are inherently
latent. Mathematically, we assume that the behavior variables fol-
low a distribution represented as 𝑄 (𝑐), where ∑

𝑄 (𝑐𝑘 ) = 1 and
𝑄 (𝑐𝑘 ) ≥ 0. We estimate𝑄 (𝑐𝑘 ) in the following E-step and consider
it as a constant. Hence, based on the Jensen’s inequality, the right

term in Eq. 9 can be rewritten as:

=

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log
𝐾∑︁
𝑘=1

𝑄 (𝑐𝑘 )
𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 )

𝑄 (𝑐𝑘 )

≥
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑄 (𝑐𝑘 ) log
𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 )

𝑄 (𝑐𝑘 )

≥
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

[
𝑄 (𝑐𝑘 ) log 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ) −𝑄 (𝑐𝑘 ) log𝑄 (𝑐𝑘 )

]
∝

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑄 (𝑐𝑘 ) log 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ) .

(10)

The inequalitywill holdwith equalitywhen𝑄 (𝑐𝑘 ) = 𝑃𝜃 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )).
We have found a lower bound of Eq. 9. However, we cannot directly
optimize Eq. 10 because 𝑄 (𝑐) is unknown. To address this, we in-
novatively propose a generalized expectation-maximization (EM)
approach that iteratively optimizes the objective function and guar-
antees convergence. The core idea is, to begin with an initial model
parameter 𝜃 , we estimate the behavior distribution 𝑄 (𝑐) in the E-
step (Behavior and Preference Learning). Once we have the values
of 𝑄 (𝑐), we update the parameter 𝜃 by maximizing Eq. 9 in M-step
(Dual Contrastive Learning). This iterative process is repeated until
the likelihood can no longer be increased. Using the EM framework,
we can effectively handle the incompleteness caused by the missing
behavior distribution 𝑄 (𝑐), allowing us to make reliable estimates
of both the decoupled behaviors and the model parameters 𝜃 .

4.2 E-step: Behavior and Preference Learning
4.2.1 Behavior learning. In this section, we aim to decouple and
estimate the behavior type from the user interactions, i.e., the be-
havior distribution 𝑄 (𝑐). We first define the representation of the
interaction (𝑢𝑖 , 𝑣 𝑗 ) as follows:

I𝑖, 𝑗 = 𝑧𝑢𝑖 ⊙ 𝑧𝑣𝑗 , (11)

whereI𝑖, 𝑗 ∈ R𝑑 is the representation of the interaction (𝑢𝑖 , 𝑣 𝑗 ). 𝑧𝑢𝑖 ∈
R𝑑 and 𝑧𝑣

𝑗
∈ R𝑑 are learned representations of the user 𝑖 and item
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𝑗 through Eq. 4, respectively. ⊙ denotes the element-wise product.
Then, we define the learnable vectors {B𝑘 }𝐾𝑘=1 (B𝑘 ∈ R𝑑 ) as the
latent behavior embeddings to adaptively learn the relationships
between the interacted users and items, where 𝐾 is the number of
latent behaviors. Subsequently, we can obtain the probability of
interaction (𝑢𝑖 , 𝑣 𝑗 ) belonging to each behavior type as:

𝑟 𝑖, 𝑗 = 𝜙 ( [I𝑖, 𝑗 ] · BT), (12)

where B = [B1,B2, ...,B𝐾 ] ∈ R𝐾×𝑑 is the behavior vector matrix.
𝑟 𝑖, 𝑗 ∈ R1×𝐾 is the behavior probability. For example, 𝑟 𝑖, 𝑗1,𝑘 denotes
the probability of interaction (𝑢𝑖 , 𝑣 𝑗 ) belonging to the behavior
𝑐𝑘 . Then, based on the behavior probability, we can partition the
interaction (𝑢𝑖 , 𝑣 𝑗 ) into one of 𝐾 behavior types as:

T (𝑢𝑖 , 𝑣 𝑗 ) = 𝑐𝑘 , if 𝑟 𝑖, 𝑗1,𝑘 = max(𝑟 𝑖, 𝑗 ) (13)

where T (𝑢𝑖 , 𝑣 𝑗 ) denotes the latent behavior type of the interac-
tion (𝑢𝑖 , 𝑣 𝑗 ). Now, we have obtained the behavior types for each
interaction in a batch. Naturally, we can obtain the distribution of
behaviors 𝑄 (𝑐) within the batch, which is expressed as follows:

𝑄 (𝑐𝑘 ) = 𝑃𝜃 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) =
{1, if T (𝑢𝑖 , 𝑣 𝑗 ) = 𝑐𝑘
0, otherwise . (14)

4.2.2 Preference learning. Through our observation, the user pref-
erence level for an item is strongly correlated with the similarity
between the user and item representations. That is, the user prefer-
ence level for one item is higher when the similarity between the
user and item representations is greater. Thus, we assume that the
preference levels can be measured as the similarity between the
representation of users and items to some extent. Specifically, we
obtain the preference matrix P ∈ R𝑀×𝑁 between users and items
based on the learned representation learned from Eq. 4 as:

P𝑖, 𝑗 =
{
sim(𝑧𝑢𝑖 , 𝑧

𝑣
𝑗 ), if A𝑖, 𝑗 = 1

0, otherwise,
(15)

where sim(·, ·) is a similarity function (e.g., dot product), and P𝑖, 𝑗 ∈
P is the preference level of user 𝑖 for item 𝑗 , which can effectively
capture the relationship and preference between users and items.
Hence, to generate semantic representation for better contrastive
learning, we perform the GNN-based representation learning on the
preference view, i.e., the preference matrix P. First, we normalize
the preference matrix as:

P̂ = (D𝑝 )1/2P(D𝑝 )1/2, (16)

where D𝑝 is the diagonal degree matrix of P. Then, we define the
GNN-based representation learning on the preference view P̂ as:

H𝑢
𝑙
= 𝜎 (P̂H𝑣

𝑙−1), H
𝑣
𝑙
= 𝜎 ((P̂)TH𝑢

𝑙−1),

H𝑢 =

𝐿∑︁
𝑙=0

H𝑢
𝑙
, H𝑣 =

𝐿∑︁
𝑙=0

H𝑣
𝑙
,

(17)

whereH𝑢 andH𝑣 are the learned representations of users and items
from the preference view. ℎ𝑢

𝑖
∈ H𝑢 (ℎ𝑣

𝑗
∈ H𝑣 ) is the representation

of user 𝑖 (item 𝑗 ). We initializeH𝑢0 andH𝑣0 as E
𝑢 and E𝑣 , respectively.

4.3 M-step: Dual Contrastive Learning
4.3.1 Behavior Contrastive Learning. Through the E-step, we have
obtained the interaction representation and estimate the behavior
distribution function 𝑄 (𝑐). To maximize the objective in Eq. 10, we
also need to calculate 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ). Here, we assume that the prior
distribution over behaviors is uniform, the conditional distribution
of (𝑢𝑖 , 𝑣 𝑗 ) given 𝑐𝑘 follows isotropic Gaussianwith 𝐿2 normalization
to make the final objection easier to solve. Then we can rewrite
𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ) as follows:

𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ) = 𝑃𝜃 (𝑐𝑘 )𝑃𝜃 ((𝑢𝑖 , 𝑣 𝑗 ) |𝑐𝑘 ) =
1
𝐾

· 𝑃𝜃 ((𝑢𝑖 , 𝑣 𝑗 ) |𝑐𝑘 )

∝ 1
𝐾

·
exp(−(I𝑖, 𝑗 − B𝑘 )2)∑𝐾

𝑘 ′=1 exp(−(I𝑖, 𝑗 − B𝑘 ′ )2)

∝ 1
𝐾

·
exp(I𝑖, 𝑗 · B𝑘 ))∑𝐾
𝑘 ′=1 exp(I𝑖, 𝑗 · B𝑘 ′ )

,

(18)

where I𝑖, 𝑗 and B𝑘 are representations of interaction (𝑢𝑖 , 𝑣 𝑗 ) and
behavior 𝑐𝑘 , respectively. Based on Eq. 14 and 18, maximizing the
lower bound in Eq. 10 is equivalent to minimize the following loss:

L𝑏𝑐𝑙 =
𝑀∑︁
𝑖=1

T(𝑢𝑖 ,𝑣𝑗 )=𝑐𝑘∑︁
A𝑖,𝑗=1

− log
exp(sim(I𝑖, 𝑗 ,B𝑘 ))∑𝐾

𝑘 ′=1 exp(sim(I𝑖, 𝑗 ,B𝑘 ′ ))
. (19)

We can see that Eq. 19 is similar to general contrastive learning,
which aims to maximize the mutual information between two view
representations. While Eq. 19 maximizes the mutual information
between one interaction and its corresponding behavior type.

4.3.2 Preference-guided Contrastive Learning. Existing CL-based
methods often generate contrastive views by perturbing graph
structure or embedding. However, this approach carries the risk of
introducing harmful noise or discarding crucial information, hinder-
ing representation learning. In contrast, we construct a preference
viewwithout handcrafted perturbation. It is important to emphasize
that, instead of perturbing structure and embedding, our approach
only involves a preference-ware representation, which ensures that
the CL process is informative. Then, we design a preference-guided
contrastive loss by contrasting representations from the original
view and the preference view, which is defined as follows:

L𝑢
𝑝𝑐𝑙

=

𝑀∑︁
𝑖=1

−log
exp(sim(𝑧𝑢

𝑖
, ℎ𝑢
𝑖
)/𝜏)∑𝑀

𝑖′=1 exp(sim(𝑧𝑢
𝑖
, ℎ𝑢
𝑖′ )/𝜏)

(20)

where L𝑢
𝑝𝑐𝑙

is the preference-guided contrastive loss for users. 𝑧𝑢
𝑖

and ℎ𝑢
𝑖
are the learned representations of user 𝑖 from the orig-

inal view and the preference view, respectively. The item-side
preference-guided contrastive loss L𝑣

𝑝𝑐𝑙
is defined in the same way.

4.4 Inference and Optimization
Inference. We adopt an inner product to predict the interaction
probability 𝑦𝑖, 𝑗 between user 𝑖 and item 𝑗 as:

𝑦𝑖, 𝑗 = 𝑧
𝑢
𝑖 · 𝑧𝑣𝑗 . (21)

Optimization. We employ a multi-task training approach to train
our proposed model, which involves optimizing the main recom-
mendation task via Eq. 6, the BCL task via Eq. 19, and the PCL task
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via Eq. 20. Specifically, we define the overall loss function as:

L𝑝𝑐𝑙 =L𝑢𝑝𝑐𝑙 + L𝑣
𝑝𝑐𝑙

,

L = L𝑏𝑝𝑟 + 𝜆1L𝑏𝑐𝑙 + 𝜆2L𝑝𝑐𝑙 + 𝜆3 | |Θ| |22 ,
(22)

where Θ denotes the learnable parameter sets. 𝜆1, 𝜆2, and 𝜆3 are the
weights for behavior contrastive loss, preference-guided contrastive
loss, and regularization loss, respectively.

4.5 Convergence Analysis
To prove the convergence of DBCR under the generalized EM frame-
work, we only need to prove that the value of our log-likelihood
function keeps increasing as the number of iterations increases, i.e.,

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃𝑠+1 (𝑢𝑖 , 𝑣 𝑗 ) ≥
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃𝑠 (𝑢𝑖 , 𝑣 𝑗 ), (23)

where 𝑠 denotes the iteration number. The optimization goal in the
𝑠 + 1 round can be expressed as:

𝐿(𝜃, 𝜃𝑠 ) =
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) log 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 ), (24)

where 𝜃𝑠 are the obtained model parameters by optimizing the
model in 𝑠 rounds. Then, we define:

𝐻 (𝜃, 𝜃𝑠 ) =
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) log 𝑃𝜃 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )).

(25)
Subtract the above two formulas 𝐿(𝜃, 𝜃𝑠 ) and 𝐻 (𝜃, 𝜃𝑠 ), and get:

𝐿(𝜃, 𝜃𝑠 ) − 𝐻 (𝜃, 𝜃𝑠 )

=

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) log
𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 , 𝑐𝑘 )
𝑃𝜃 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 ))

=

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) log 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 )

=

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃 (𝑢𝑖 , 𝑣 𝑗 ) .

(26)

In the final formula obtained from the above formula, we let 𝜃 equal
to 𝜃𝑠 and 𝜃𝑠+1 respectively, and get:

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃𝑠+1 (𝑢𝑖 , 𝑣 𝑗 ) −
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃𝑠 (𝑢𝑖 , 𝑣 𝑗 )

=[𝐿(𝜃𝑠+1, 𝜃𝑠 ) − 𝐿(𝜃𝑠 , 𝜃𝑠 )] − [𝐻 (𝜃𝑠+1, 𝜃𝑠 ) − 𝐻 (𝜃𝑠 , 𝜃𝑠 )] .

(27)

To prove the convergence of the EM algorithm, we only need to
prove that the right side of the above formula is non-negative. Since
𝜃𝑠+1 makes 𝐿(𝜃, 𝜃𝑠 ) maximal, then we have:

𝐿(𝜃𝑠+1, 𝜃𝑠 ) − 𝐿(𝜃𝑠 , 𝜃𝑠 ) ≥ 0. (28)

For the second part, based on the Jensen’s inequality, we have:

𝐻 (𝜃𝑠+1, 𝜃𝑠 ) − 𝐻 (𝜃𝑠 , 𝜃𝑠 )

=

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

𝐾∑︁
𝑘=1

𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) log
𝑃𝜃𝑠+1 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 ))
𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 ))

≤
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log
𝐾∑︁
𝑘=1

𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 ))
𝑃𝜃𝑠+1 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 ))
𝑃𝜃𝑠 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 ))

=

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log
𝐾∑︁
𝑘=1

𝑃𝜃𝑠+1 (𝑐𝑘 | (𝑢𝑖 , 𝑣 𝑗 )) = 0,

(29)

where the final result 0 uses the property that the probability dis-
tribution accumulates to 1. Finally, we have:

𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃𝑠+1 (𝑢𝑖 , 𝑣 𝑗 ) −
𝑀∑︁
𝑖=1

∑︁
A𝑖,𝑗=1

log 𝑃𝜃𝑠 (𝑢𝑖 , 𝑣 𝑗 ) ≥ 0. (30)

Thus, the convergence of our method is proved, as shown in Eq. 23.

4.6 Time Complexity Analysis
In this section, we analyze the time complexity of our model during
both the pre-processing and the batch training stages. We also
compare it with the state-of-art methods as presented in Table 1.

4.6.1 Complexity of the Pre-processing. All the methods need to
normalize the adjacencymatrix, which has an𝑂 (𝐸) time complexity.
Note that LightGCL needs to perform Singular Value Decomposi-
tion (SVD) to generate its contrastive view, which leads to an extra
computational cost of 𝑂 (𝑞𝐸).

4.6.2 Complexity of the Batch Training.

• Augmentation. Our method performs behavior learning and pref-
erence view constructing, which leads to an 𝑂 (𝐸𝑑 + 𝐵𝐾𝑑) time
complexity. For the other methods, SGL performs two graph aug-
mentations, which is 𝑂 (2𝜌𝐸); DCCF requires distill latent intent
factors across all layers, which is (𝑂 (2𝐸𝐿𝑑)). NCL need perform
clustering to get the prototypes, which is 𝑂 ((𝑀 + 𝑁 )𝑑); Both
SimGCL and XSimGCL add noise on the learned embeddings,
which are also 𝑂 ((𝑀 + 𝑁 )𝑑).

• GNN. Our method performs GNN on both original view and
preference view, which is an 𝑂 (4𝐸𝐿𝑑) time complexity. A three-
GNN architecture is adopted in both SGL and SimGCL to learn
two different augmentations, which is 𝑂 (6𝐸𝐿𝑑).

• BPR Loss. All methods are trained with the BPR loss and each
batch contains 𝐵 interactions, with 𝐵 random negative interac-
tion, so they have exactly the same time cost in this regard.

• Contrastive Loss.Our method contrasts the positive with negative
samples for behavior and preference contrastive learning in a
batch, which is𝑂 (𝐵𝑑+𝐵(𝑇 +𝐾)𝑑) complexity; DCCF contrasts all
nodes across all layers per-batch, leading to𝑂 (𝐵(𝑀 +𝑁 )𝐿𝑑) com-
plexity; NCL need perform 𝐾2-prototype contrastive learning,
which brings extra 𝑂 (𝐵𝐾2𝑑) complexity.

To sum up, XSimGCL is the current lightweight yet effectivemethod.
And compared to all these methods, our DBCR demonstrates sig-
nificant competitiveness in terms of time complexity.
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Table 1: Comparisons of computational complexity with baselines. In the table, 𝐸, 𝐿 and 𝑑 denote the number of edges, the
number of GNN layers, and the embedding size; 𝜌 ∈ (0, 1] is the edge keep rate in SGL; 𝑞, 𝐾 , 𝐾1 and 𝐾2 are the SVD-required
rank in LightGCL, the number of behavior types in DBCR, the number of latent intents in DCCF and the number of prototypes
in NCL.𝑀 and 𝑁 represent the number of users and items; 𝐵 and 𝑇 are the batch size and node number in a batch.

Stage LightGCN SGL LightGCL DCCF NCL SimGCL XSimGCL DBCR

Pre-processing 𝑂 (𝐸) 𝑂 (𝐸) 𝑂 ((𝑞 + 1)𝐸) 𝑂 (𝐸) 𝑂 (𝐸) 𝑂 (𝐸) 𝑂 (𝐸) 𝑂 (𝐸)
Augmentation - 𝑂 (2𝜌𝐸) - 𝑂 (2𝐸𝐿𝑑) 𝑂 ((𝑀 + 𝑁 )𝑑) 𝑂 ((𝑀 + 𝑁 )𝑑) 𝑂 ((𝑀 + 𝑁 )𝑑) 𝑂 (𝐵𝐾𝑑 + 𝐸𝑑)

GNN 𝑂 (2𝐸𝐿𝑑) 𝑂 (2𝐸𝐿𝑑 + 4𝜌𝐸𝐿𝑑) 𝑂 (2𝐸𝐿𝑑 + 2𝑞(𝑀 + 𝑁 )𝐿𝑑) 𝑂 (2𝐸𝐿𝑑 + 𝐾1 (𝑀 + 𝑁 )𝐿𝑑) 𝑂 (2𝐸𝐿𝑑) 𝑂 (6𝐸𝐿𝑑) 𝑂 (2𝐸𝐿𝑑) 𝑂 (4𝐸𝐿𝑑)
BPR Loss 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑) 𝑂 (2𝐵𝑑)

Contrastive Loss - 𝑂 (𝐵𝑑 + 𝐵𝑇𝑑) 𝑂 ((𝐵𝑑 + 𝐵𝑇𝑑)𝐿) 𝑂 (𝐵(𝑀 + 𝑁 )𝐿𝑑) 𝑂 (𝐵𝑑 + 𝐵(𝑇 + 𝐾2)𝑑) 𝑂 (𝐵𝑑 + 𝐵𝑇𝑑) 𝑂 (𝐵𝑑 + 𝐵𝑇𝑑) 𝑂 (𝐵𝑑 + 𝐵(𝑇 + 𝐾)𝑑)

5 Evaluation
To verify the effectiveness of DBCR, we try to answer the following
research questions:
• RQ1: How effective is DBCR to boost recommendation?
• RQ2: How efficient is the performance of DBCR?
• RQ3: Do the proposed components enhance the performance?
• RQ4:HowdoesDBCR perform on the realmulti-behavior dataset?
• RQ5: How do different hyper-parameter settings affect DBCR?

5.1 Experimental Setup
5.1.1 Datasets. We evaluate all the methods on three real-world
datasets [1], including Gowalla, Amazon-book, and Tmall. Detailed
statistics of the datasets are presented in Table 2.

Table 2: Description of binary datasets used in evaluations.

Dataset #Users #Items #Interactions Density

Gowalla 50,821 57,440 1,172,425 4.0e-4
Amazon-book 78,578 77,801 2,240,156 3.7e-4
Tmall 47,939 41,390 2,357,450 1.2e-3

5.1.2 Baselines. To evaluate the proposed DBCR, we compare it
with the state-of-the-art baselines presented in four groups:
❶ General neural methods: NCF [8] and AutoR [16].
❷ GNN-based methods: NGCF [18] and LightGCN [6].
❸ CL-based methods: SLRec [32], SGL [26], HCCF [29], NCL [12],
LightGCL [1], SimGCL [34] and XSimGCL [33].
❹ Decoupling-based methods: DisenGCN [13], DisenHAN [22],
CDR [2], DGCF [20], DGCL [11] and DCCF [15].

5.1.3 Implementations and Metrics. Our method is implemented
using the PyTorch framework, leveraging the Adam Optimizer
for optimization purposes with a learning rate set to 0.001. The
hyper-parameters 𝐾 , 𝜆1, 𝜆2, and 𝜆3 are tuned from the range of [1,
10], [0.1, 0.5], [0.1, 0.5], and [1e-7, 1e-6], respectively. To ensure a
fair comparison, we set the initial embedding size 𝑑 to 32 for all
methods. For graph-based models, we select the number of GNN
layers 𝐿 from {1, 2, 3}. We use two commonly used top-K evaluation
metrics (Recall@K and NDCG@K) and follow an all-rank approach,
where positive items from the test set are ranked together with
all un-interacted items for each user [18, 30]. All experiments are
conducted on a machine featuring a 32-core CPU, a 24GB NVIDIA
4090 GPU, 125GB memory, and powered by the Linux OS.

5.2 Performance Analysis (RQ1)
To address research question RQ1, we present a performance com-
parison of different recommendation methods in Table 3. The fol-
lowing key observations are made.

❶DBCR consistently outperforms all baselines on all datasets.
Compared to the state-of-the-art method DCCF, our approach
achieves an average improvement of 16.9% on three datasets. We
attribute this success to our model’s effective decoupling of latent
user behaviors from binary interactions through the EM framework:
preference and behavior learning (E-step) and dual contrastive
learning (M-step). This allows us to capture the intricate diver-
sity of user-item interactions and model complex relationships
between users and items in real-world recommendation scenarios.
Furthermore, our approach designs a preference-guided contrastive
learning task without perturbing structure and embedding, which
ensures that the CL process is preference-aware and informative.

❷ Compared to Recall@40 (NDCG@40), DBCR achieves a
greater improvement in Recall@20 (NDCG@20). For example,
on the Gowalla dataset, DBCR achieves an improvement of 14.2%
in Recall@20, and a 12.2% enhancement in Recall@40. Similarly,
it shows an 16.9% increase in NDCG@20 and a 15.4% uplift in
NDCG@40. Comparable improvements can be also observed on
Amazon-book and Tmall datasets. Overall experiments have shown
that our model yields a more notable improvement in Metric@20
than inMetric@40. This suggests that our model is better at ranking
items of interest for users within the top 20 recommended results,
while the top 40 recommendations may include more items that
users are not interested in. Thus, DBCR is more effective in captur-
ing user interests. Overall, our results indicate the effectiveness of
our model in accurately ranking user-relevant items within the top
20 recommendations, demonstrating its ability to understand and
predict user interests while effectively filtering out unrelated items.

5.3 Efficiency Study (RQ2)
In this section, we analyze the batch training efficiency of our model
in comparison to seven competitive baselines, as shown in Figure
2. Specifically, we report the actual training time on the Gowalla
dataset and make the following observations.

❶ For the convergence epoch and per-batch training time,
DBCR is comparable to the state-of-the-art GCL-based meth-
ods. No-GCL method LightGCN is trained with hundreds of epochs.
By contrast, GCL-based methods (SGL, LightGCL, DCCF, NCL,
SimGCL and XSimGCL) need the fewest epochs to reach conver-
gence, due to the contrastive learning for accelerating convergence.
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Table 3: Comparing various state-of-the-art recommendation baselines on benchmark datasets.

Datasets Gowalla Amazon-book Tmall

Metrics Recall@20 Recall@40 NDCG@20 NDCG@40 Recall@20 Recall@40 NDCG@20 NDCG@40 Recall@20 Recall@40 NDCG@20 NDCG@40

NCF 0.1247 0.1910 0.0659 0.0832 0.0468 0.0771 0.0336 0.0438 0.0383 0.0647 0.0252 0.0344
AutoR 0.1409 0.2142 0.0716 0.0905 0.0546 0.0914 0.0354 0.0482 0.0336 0.0611 0.0203 0.0295

NGCF 0.1413 0.2072 0.0813 0.0987 0.0532 0.0866 0.0388 0.0501 0.0420 0.0751 0.0250 0.0365
LightGCN 0.1799 0.2577 0.1053 0.1255 0.0732 0.1148 0.0544 0.0681 0.0555 0.0895 0.0381 0.0499

SLRec 0.1529 0.2200 0.0926 0.1102 0.0544 0.0879 0.0374 0.0490 0.0549 0.0888 0.0375 0.0492
SGL 0.1814 0.2589 0.1065 0.1267 0.0774 0.1204 0.0578 0.0719 0.0574 0.0919 0.0393 0.0513
HCCF 0.1818 0.2601 0.1061 0.1265 0.0824 0.1282 0.0625 0.0776 0.0623 0.0986 0.0425 0.0552
NCL 0.1831 0.2624 0.1089 0.1293 0.0846 0.1318 0.0656 0.0802 0.0647 0.0986 0.0446 0.0568

LightGCL 0.1827 0.2606 0.1082 0.1284 0.0840 0.1285 0.0648 0.0794 0.0633 0.0974 0.0447 0.0565
SimGCL 0.1927 0.2699 0.1139 0.1344 0.0907 0.1365 0.0696 0.0839 0.0680 0.1053 0.0480 0.0609
XSimGCL 0.1933 0.2709 0.1145 0.1350 0.0911 0.1368 0.0701 0.0844 0.0693 0.1072 0.0489 0.0621

DisenGCN 0.1379 0.2003 0.0798 0.0961 0.0481 0.0776 0.0353 0.0451 0.0422 0.0688 0.0285 0.0377
DisenHAN 0.1437 0.2079 0.0829 0.0997 0.0542 0.0865 0.0407 0.0513 0.0416 0.0682 0.0283 0.0376

CDR 0.1364 0.1943 0.0812 0.0963 0.0564 0.0887 0.0419 0.0526 0.520 0.0833 0.0356 0.0465
DGCF 0.1784 0.2515 0.1069 0.1259 0.0688 0.1073 0.0513 0.0640 0.0544 0.0867 0.0372 0.0484
DGCL 0.1793 0.2483 0.1067 0.1247 0.0677 0.1057 0.0506 0.0631 0.0526 0.0845 0.0359 0.0469
DCCF 0.1883 0.2648 0.1127 0.1325 0.0894 0.1347 0.0686 0.0834 0.0672 0.1048 0.0473 0.0602

DBCR 0.2203 0.3039 0.1338 0.1558 0.1118 0.1631 0.0876 0.1041 0.0786 0.1212 0.0558 0.0706
Imprv. 14.2% 12.2% 16.9% 15.4% 22.7% 19.2% 25.0% 23.3% 13.4% 13.1% 14.1% 13.7%

DBCR ranked third in the number of epochs to get converged. Con-
sistent with our analysis on time complexity in section 4.6, our
DBCR approach ranks third in batch training time among GCL-
based methods, following behind NCL and XSimGCL.

❷ The total training time of DBCR is also competitive com-
pared with the existing SOTA methods. SGL takes the longest
time to finish the computation in a single batch, which is almost
several times that of LightGCN on all the datasets. XSimGCL ranks
second due to its lightweight contrastive learning architecture. Our
DBCR ranks third due to its effective and efficient contrastive learn-
ing strategy for better model optimization, which also shows a
significant improvement in recommendation performance.

Figure 2: The training epoch and time of different methods.

5.4 Ablation Study (RQ3)
In our model, two essential components contribute to model perfor-
mance: behavior contrastive learning (BCL) and preference-guided
contrastive learning (PCL). To answer research question RQ2, we
conduct extensive experiments to verify the effect of the compo-
nents in DBCR. Table 4 reveals the performance of the different
variants of DBCR. (A) is our final model, and (B) to (D) are DBCR
removed certain components: w/o BCL is the baseline LightGCN

with using PCL; w/o PCL is the baseline LightGCN with using BCL;
Only BPR is the baseline LightGCN.

❶ Behavioral decoupling (BCL) is important for modeling
users and items. Compared (A) with (B), we find that without the
proposed BCL, the performance drops significantly, demonstrating
the effectiveness of BCL, which can effectively capture the intricate
diversity of user-item interactions and model complex relationships
in recommendation scenarios.

❷ PCL plays a crucial role in better contrastive learning and
representation enhancement. Compared (A) with (C), we find
that PCL is important for representation learning, which leverages
preference view representation to construct a preference-guided
contrastive learning task, resulting in a more informative and effec-
tive contrastive learning process than current methods.

❸ Compared with DBCR, only BPR (i.e., LightGCN) exhibits
poor performance. When comparing (A) with (D), it becomes ev-
ident that relying solely on the main BPR task leads to subpar
performance. This observation serves to underscore not only the
efficacy of our model but also the critical significance of each indi-
vidual component within the proposed framework.

Table 4: Performance with different variants (@20).

Model Metric Gowalla Amazon-book Tmall

(A) DBCR Recall 0.2203 0.1118 0.0786
NDCG 0.1338 0.0876 0.0558

(B) w/o BCL Recall 0.2051 0.0986 0.0664
NDCG 0.1255 0.0781 0.0502

(B) w/o PCL Recall 0.1993 0.0943 0.0636
NDCG 0.1207 0.0751 0.0478

(D) Only BPR Recall 0.1799 0.0732 0.0555
NDCG 0.1082 0.0544 0.0381
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5.5 Verification of Behavior Decoupling (RQ4)
To validate the effectiveness of behavior decoupling, we conduct ad-
ditional experiments using a real multi-behavior IJCAI dataset [24],
which contains four types of user behaviors: Page View, Favorite,
Cart, and Buy. We integrate these four types of behaviors into a
unified user-item interaction matrix and conduct experiments on it.
The experimental results are as follows.

❶ Performance with different 𝐾 . Table 5 indicates that the
optimal performance is achieved when 𝐾 = 4, which coincides
with the number of user behaviors 4 in the IJCAI dataset. It also
demonstrates that our model can effectively learn from a multi-
behavior dataset, capturing the nuances and distinctions between
different types of user-item interactions

Table 5: Performance with different 𝐾 on IJCAI dataset.

𝐾 1 2 3 4 5
NDCG@10 0.166 0.168 0.170 0.172 0.171

𝐾 6 7 8 9 10
NDCG@10 0.169 0.167 0.169 0.168 0.168

❷ Performance with different methods on the real multi-
behavior dataset. Table 6 demonstrates the superior performance
of the proposed DBCR method compared to the existing state-
of-the-art approach on the IJCAI dataset, which is a real multi-
behavior dataset. This underscores the effectiveness of our method
in addressing such multi-behavior datasets, thereby reinforcing its
practical relevance and potential for broader applicability.

Table 6: Performance with various methods on IJCAI dataset.

Methods LightGCN SGL LightGCL NCL
NDCG@10 0.124 0.123 0.130 0.134

Methods DCCF SimGCL XSimGCL DBCR
NDCG@10 0.143 0.154 0.156 0.172

5.6 Hyper-parameter Analysis (RQ5)
To investigate the impact of hyper-parameters on the model per-
formance, we conduct the following experiments.

❶ Analysis of the latent behavior number 𝐾 . We conduct
experiments to explore how many latent behavior variables are
effective (i.e., 𝐾 ) as shown in Figure 3(a). We observe that the best
number of latent behaviors varies across different datasets. For ex-
ample, on the Gowalla dataset, the best value of K is 3, while the best
value of K on the Amazon dataset is 6. It can be explained by that
different recommendation platforms provide users with different
services, corresponding to different behaviors, such as purchasing
behavior on an e-commerce site, while creating/watching videos
on a video-sharing platform. This also demonstrates our model can
effectively capture behavior differences in real-world applications
and achieve superior performance.

❷ Analysis of loss hyper-parameters 𝜆1 and 𝜆2. As shown in
Figure 3(b) and 3(c), we explore the sensitivity of our model with
two crucial hyper-parameters: the weights for behavior contrastive

loss 𝜆1 and preference-guided contrastive loss 𝜆2. We find DBCR
reaches its best performance when increasing 𝜆1 to 0.1, and then it
starts to deteriorate as 𝜆1 becomes larger. 𝜆2 has the same situation.
These findings suggest that contrastive learning as an auxiliary task,
the weight of its loss should also be controlled within a reasonable
range, so as not to exert excessive influence on the main task. Hence,
we select the configurationwith 𝜆1 = 0.1 and 𝜆2 = 0.2 as the optimal
choice. In this configuration, the model strikes an effective balance
between the main recommendation loss, behavior contrastive loss,
and preference-guided contrastive loss, which facilitates a more
comprehensive and robust optimization process.

(a) Impact of 𝐾

(b) Impact of 𝜆1

(c) Impact of 𝜆2

Figure 3: Influence of hyper-parameters on three datasets.

6 Conclusion and Limitation
In this work, an effective recommendation method (DBCR) is pro-
posed, which aims to decouple latent user behaviors from binary
interactions for better modeling of users and items. The core of
DBCR is to learn user behavior distribution function from binary
user-item interactions and utilize self-supervised contrastive learn-
ing to optimize the model within the Expectation-Maximization
(EM) framework. Additionally, an informative contrastive learning
task is designed based on the preference view to further improve
the representation. For future work, we aim to address the limi-
tation by extending our model to tackle even more complex and
larger-scale recommendation scenarios. Additionally, we plan to in-
corporate external knowledge for a more comprehensive modeling
of latent user behaviors. These enhancements will further improve
the performance and effectiveness of our approach.
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